陶瓷膜技術

首頁 > 技術知識 > 陶瓷膜技術

陶瓷膜技術

陶瓷膜是無機膜中的一種,屬于膜分離技術中的固體膜材料,主要以不同規格的氧化鋁、氧化鋯、氧化鈦和氧化硅等無機陶瓷材料作為支撐體,經表面涂膜、高溫燒制而成。商品化的陶瓷膜通常具有三層結構(多孔支撐層、過渡層及分離層),呈非對稱分布,其孔徑規格為0.8nm~1μm不等,過濾精度涵蓋微濾、超濾、納濾級別。

根據支撐體的不同,陶瓷膜的構型可分為平板、管式、多通道三種。陶瓷膜由于耐酸堿、耐高溫和在極端環境下的化學穩定性,又由于商品化的陶瓷膜孔徑較?。ㄍǔP∮?.2μm),可以成功地實現分子級過濾,因此其主要用于對液態、氣態混合物進行過濾分離,可以取代傳統的離心、蒸發、精餾、過濾等分離技術,達到提高產品質量、降低生產成本的目標,在石油和化學工業等苛刻環境中具有廣泛的應用前景。

特性

相較于傳統聚合物分離膜材料,陶瓷膜具有化學穩定性好,能耐酸、耐堿、耐有機溶劑;機械強度大,可反向沖洗;抗微生物能力強;耐高溫;孔徑分布窄、分離效率高等優點,在食品工業、生物工程、環境工程、化學工業、石油化工、冶金工業等領域得到了廣泛的應用,其市場銷售額以30%的年增長率發展著。陶瓷膜的不足之處在于造價較高、無機材料脆性大、彈性小、給膜的成型加工及組件裝備帶來一定的困難等。

特性

陶瓷膜分離工藝是一種“錯流過濾”形式的流體分離過程:原料液在膜管內高速流動,在壓力驅動下含小分子組分的澄清滲透液沿與之垂直方向向外透過膜,含大分子組分的混濁濃縮液被膜截留,從而使流體達到分離、濃縮、純化的目的。

陶瓷膜是由孔隙率30%~50%、孔徑50nm~15μm的陶瓷載體,采用溶膠-凝膠法或其它工藝制作而成的非對稱復合膜。用于分離的陶瓷膜的結構通常為三明治式的:支撐層(又稱載體層)、過渡層(又稱中間層)、膜層(又稱分離層)。其中支撐層的孔徑一般為1~20μm,孔隙率為30%~65%,其作用是增加膜的機械強度;中間層的孔徑比支撐層的孔徑小,其作用是防止膜層制備過程中顆粒向多孔支撐層的滲透,厚度約為20~60μm,孔隙率為30%~40%;膜層具有分離功能,孔徑從0.8nm~1μm不等,厚度約為3~10μm,孔隙率為40%~55%。整個膜的孔徑分布由支撐層到膜層逐漸減小,形成不對稱的結構分布。

陶瓷膜根據孔徑可分為微濾(孔徑大于50nm)、超濾(孔徑2~50nm)、納濾(孔徑小于2nm)等種類。進行分離時,在外力的作用下,小分子物質透過膜,大分子物質被膜截留,從而達到分離、濃縮、純化、去雜、除菌等目的。

應用

陶瓷膜的研究始于20世紀40年代,其發展可分為3個階段:用于鈾的同位素分離的核工業時期,以無機微濾膜和超濾膜為主的液體分離時期,以及以膜催化反應為核心的全面發展的時期。20世紀80年代初期成功地在法國的奶業和飲料(葡萄酒、啤酒、蘋果酒)業推廣應用后,陶瓷膜分離技術和產業地位逐步確立,應用也已拓展至食品工業、生物工程、環境工程、化學工程、石油化工、冶金工業等領域,成為苛刻條件下精密過濾分離的重要新技術。

1998年網上公布的膜和膜設備生產廠家及經營公司達452家,其中金屬膜廠50家,陶瓷膜生產廠94家。因開發時期較晚且成本高昂,無機分離膜領域所占的市場份額還比較小,1997年美國無機膜市場銷售額為1億美元,其中陶瓷膜占80%左右,僅占膜市場的9%。另據估計,2004年世界陶瓷膜的市場銷售額約超過100億美元,無機膜的市場占有率占12%。由于陶瓷膜在精密過濾分離中的成功應用,其市場銷售額以30%的年增長率發展。

我國無機膜的研究始于20世紀80年代末,通過國家自然科學基金以及各部委的支持,以南京工業大學為代表的陶瓷膜研究團隊已經能在實驗室規模制備出無機微濾膜及超濾膜等,反應用膜以及微孔膜也正在開發中。進入90年代,原國家科委(現科學技術部)對無機陶瓷膜的工業化技術組織了科技攻關,推進了陶瓷微濾膜的工業化進程。國家“863”計劃也將“無機分離催化膜”項目列入其中。截至20世紀初,我國已初步實現了多通道陶瓷濾膜的工業化生產,并在相關的工業過程中獲得了成功的應用。2002年第七屆國際無機膜大會在中國召開,標志著我國的無機膜研究與工業化工作已進到國際領先水平。

經過十多年的發展,我國的無機陶瓷膜行業已經具備世界領先的技術,行業內領先企業的技術實力和產品品質已經達到了國際一流的水平。行業內企業從無到有,企業產值也從起初的百萬元已經發展到數億元的規模,2010-2012年國內無機陶瓷膜成套裝備安裝面積合計約為12萬平方米。據測算,2012年全年,我國的無機陶瓷膜及成套裝備的市場總量約為5~6億元人民幣規模,其中國內生產企業的市場份額約為70%,已經在生物發酵、食品飲料、化工和水處理領域的應用具備一定的規模。

亚洲欧美人成综合在线另